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Real Part of Dielectric

ACCURACY

Constant

Measurements of the rod diameter were made with a

bench micrometer. All samples had some taper along

the length and some ellipticity about the cross section.

It is estimated that the effective diameter was measured

with an accuracy of ~ per cent. This would contribllte

an error of 1 per cent in the measurement of K’.

The resonant frequency was determined by taking

the average of the two frequencies at which the output

was a given fraction below the resonant output. Since

all frequency measurements were made using a fre-

quency counter, this method is very precise. A maxi-

mum error of 2 per cent was attributed to the electrical

measurement on the basis of spread in results using dif-

ferent cavities. The maximum over-all error in measur-

ing K’ was thus 3 per cent.

Tan 8

As noted above, the loss tangent of the cavity was

determined by use of (5). The measurement was made

twice using a different value of a each time. If the two

different determinations disagreed by more than 3 per

cent additional measurements were made. A frequency

counter was used in making the measurements. The

maximum over-all error in tan 6 was taken as 0.0005.

General Synthesis of Asymmetric Multi.Element Coupled.

Transmission-Line Directional Couplers*

RALPH

&munary—An exact synthesis procedure is derived for a class of

asymmetric multi-element coupled-transmission-line directional

couplers with any number of elements. It is based on the equivalence

between the theory of the directional coupler and that of a stepped

quarter-wavelength filter. This can be treated using Richards’

theorem for the synthesis of transmission-line distributed networks,

as described previously by Riblet. The method is extended to give a

general expression for the input reflection coefficient of the stepped

filter, which corresponds to the voltage coupling of the directional

coupler. Explicit formulas for the parameters of two, three, four and

five couplers are derived and the extension to larger number of

elements is straightforward. Two and three element couplers have

been designed on this theoretical basis, and show excellent agree-

ment with theory, for example a three element coupler of 20 db f 0.5

db over a 6:1 bandwidth, and a two element coupler of 3.2 db A 0.85

db over a 6.7:1 bandwidth. It is possible to design a 3-db to.43 db-

coupler for decade bandwidths using only four elements. The 3 db-

couplers may be used as 900 hybrids by careful choice of reference

planes in the output parts.

1. INTRODUCTION

c

OUPLED-TRANSMISSION-LINE directional

couplers have been described by a number of

authors (Oliver, 1 Jones and Bolljahn,2 and
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t Systems Division, Mullard Research Laboratories, Redhill,
Surrey, England.

1 B. M. Oliver, “Directional electromagnetic couplers, ” PROC.
IRE, vol. 42, pp. 1688–1692; November, 1954.

2 E. M. T. .Jcmesand J. T. Bolljahn, ‘(coupled-strip transmission
line filters and directional couplers,” IRE TRANS. ON MICROWAVE
THEORY AND TECHNIQUES, vol. MTT-4, pp. 75-81; April, 1956.

Shimizu and Jones3). The simple quarter-wavelength

directional coupler has perfect isolation and perfect

input match, but the coupling varies according to

L = 1 + ~(Zoe – 1/206)’ sinz o (1)

where L is the power insertion loss from the input to

arm 4 (Fig. 1). Zo, and Zoo are the impedances of the

even and odd modes in the coupled line normalized to

the impedance of the input lines, and are related by

2.,200 = 1. (2)

Eq. (1) indicates that a useful bandwidth of rather

more than one octave is obtained from the simple

quarter-wavelength section. Shimizu and Jonesa have

described how much greater bandwidths may be ob-

tained by cascading three coupled-line sections to form

a three-quarter wavelength coupler. Considerable sim-

plification of their equation (10) for the coupling is

possible (see Appendix I), leading to the formula

‘=1++[{2(z0’-&)+(z0e-+J
(

2.:2 Zoe

) 1’.sin Ocos20— — — sin3 e
2., – 2.:’

(3)

where, as in (1), L is the insertion loss from the input

$ J. K. Shimizu and E. M. T. Jones, “Coupled-transmission-line
directional couplers, ” IRE TRANS. ON MICROWAVE THEORY AND
TECHNIQUES, vol. MTT-6, pp. 403-410; October, 1958.
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Fig. l—Quarter-wavelength directional coupler.

to arm 4. This equation can be analyzed quite readily

for any coupling and bandwidth required, e.g., for a

coupling of 3 db i 0.4 db the bandwidth is 5:1. In spite

of this large bandwidth the three-quarter wavelength

coupler is not optimum in the sense of having maximum

bandwidth for a given coupling tolerance. Eq. (3) is a

cubic in sinq 6 or COS2 O and the coupling characteristic

should have two equal ripples to be of optimum form.

In fact it has only one ripple. The reason for this is the

restriction placed on the form of coupling by making the

two outer elements equal. When the three elements are

allowed to be all unequal, then it ~s possible to obtain

two ripples in the coupling characteristic. Fel’dshtein4

has shown that for such an n-element asymmetric

coupler the power division between arms 2 and 4

should take the form

where

(
1

l/COS & = cosh — cosh--l @/k
n )

(5)

and the pass band extends from 00 tc) T —8.. The coupling

or insertion loss to arm 4 is then

Cos 9

‘= Is:,l, ( )—=l+fP–h2T.2 — (6)
Cos 00

T. denotes the Chebyshev function of the first kind of

degree n.

A key to the solution of the synthesis problem is

found by noting that the couplings to arms 2 and 4 are

respectively the reflection and transmission coefficients

of a cascaded set of transmission lines of electrical length

/3 with the impedances Zl, Zg, . . . , Z. (where as an

abbreviation Z, is written for Z..,) terminated by lines

of unit impedance. This equivalence, which is illustrated

in Fig. 2, has been proved in current papers,5,0 but it is

4 A. L. Fel’dshtein, “Synthesis of stepped directional couplers, ”
Radiotekk. i Electron., vol. 6, pp. 234–240; February, 1961.

‘ R. Levy, “Coupled Transmission Line Theory and the Design of
Ultra-Broadband Microwave Components<” presented at IEE Con-
ference on Comrronents for Microwave Cn-cuits, London, England;
September 1962.’

GL. Young, “The analytical equivalence of T.E.M. mode direc-
tional couplers and transmission-line-stepped-impedance filters, ”
PROC. I. E. E., vol. 110, pp. 275–281,; February, 1963. Leo Young
has informed the author that he has independently reached the con-
clusion that the analysis of T.E.M. mode couplers is equivalent to
that of quarter-wave stepped transformers, and has heard of similar
work by S. B. Cohn and H. J. Riblet.

w-’-pi Fep...,------
I

-- . . . . . . ‘+-z
r +

1,/1 Zocl zc.~s z~=3 .—---- z~=”
y zoo, 2002 2..3 ------ Z..n

(a)

l--’-j--j ______pl:r
L 1

—
-2 ~-------~ —2,.

L.
z~=I Zo=I Zoc2 ZOC3---–- z~~” lo= I

(b)

Fig. 2—(a) Equivalence between an n-element coupler
(b) and n stepped quarter-wavelength lines.

presented in Appendix I for completeness. Its applica-

tion leads immediately to the simple derivation of equa-

tions such as (1) and (3). In the general Iossless case of n

elements the transfer matrix is given by

[

Cos o
1“1~=1 j/Zv sin 0 ‘z:::;’]= [:51 ‘7)

and the insertion loss to arm 4 of the coupler is the inser-

tion loss of the two-port network, i.e.,

I, = 1 + +(A. – D,,)z + +(& – I~n)’. (8)

Since (8) can be expressed as a polynomial in powers of

COS2O of degree n, the synthesis of the optimum coupling

characteristic may be performed by equating coeffi-

cients of cosz’ O in (8) with corresponding coefficients in

(6). This leads to n simultaneous equations in the n

variables Zl, Zz, . . . , Z., which may be solved for

values of n up to n =3. Beyond this value of n the proc-

ess rapidly becomes untractable. A solution of the prob-

lem is available, however, by recourse to modern

synthesis techniques.

II. SYNTHESIS PROCEDURE

‘The synthesis is performed using a theorem due to

Richards7 and extended by Riblet8 to the synthesis of

quarter-wave impedance transformers. The present

problem is similar to that treated by Riblet, but before

applying the techniques, it is first necessary to extend

his theorem to the synthesis of any transmission line

stepped-impedance filter, as described in Appendix II.

It follows that (6) can always be synthesized as a

stepped impedance filter with real positive characteristic

impedances. Introducing the propagation function ~,

given by

~=o-+jo (9)

7 P. 1. Richards, “Resistor-transmission- line circuits, ” PROC. IRE,
vol. 34, pp. 2 17–220; September, 1948.

8 H. J. Rib let, “General synthesis of quarter-wave impedance
transformers, ” IRE TRANS. ONT MICROWAVE THIZOR~ ANLI “rticH-
NIQUES, vol. N’ITT-S, pp. 36–43; January, 1957.
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where 6’ is the electrical length of the uniform line, and After some trigonometrical manipulation (13) can be

u is the attenuation coefficient, then Richards showed written in terms of its real and imaginary parts as

that the frequency transfer mation
cosh2 J/n(cosz rr/n cosh2 J/n – sin2 ?min sinh’ J/n)

t = tanh -y (lo) &2=l -
(cosh’ J/n – sin’ r~/n)2

maps the complex impedance plane Z(y) into the plane coshz J/n sin 2r7r/tz sinh 2J/74

Z(t), where t is a new complex variable equivalent to +.i (15)
2 (cosh2 J/n – sin2 rir/n) 2

the complex frequency variable in ordinary lumped-

element synthesis theory. Thus Z(t) satisfies Brune’s Similarly the roots of the denominator in (11) are given
condition that it must be a positive real function if it is hv

to represent a realizable impedance. For this condition -‘

to hold the reflection coefficient I’(t) must be a function cosh2 J/n(cosz rT/n cosh2 H/rz — sin2 ~ir/z sinh2 H/n)

which is regular (i.e., with no poles) in the right-half ‘~z = 1 – [cosh’ H/?z – sin2 rr/Yz) 2
plane. In the case of minimum phase networks there is

the additional condition that r(t) has no zeros in the coshz J/n sin 2r~/n sinh 2H/n

right-half plane.
+j

2 (cosh2 H/~z – sin’ r~/?z) 2
(16)

The required insertion loss function is given by (6),

so that the square of the reflection coefficient is where

()Cos o

1( )1

/32 – ]12Tn2 _

Cos 9 2 L–1
r

cos 00
— .—

L=
. (11)

Cos 00

()

cos e
1+~2–h2Tn —

Cos 00

I I’(cos O/cos (30) 12 represents the power reflection coeffi-

H = cosh-l ~1 + ~’/h. (17)

The expression for II’ (t) 12 finally takes the form

] r(t)l’ = K
(P – Z!,’)(P – tz’) . . . (P – L’)

(18)
(P – tl’x)(t’ – k“) a “ “ (t2 – f71’2)

cient of a Iossless network, and it is necessary to gen-
P2 cosh J 2

eralize (11) to give ] r(;) I 2. The generalization will 1
()

— (n odd) (19)

reduce to (11) for real frequencies (i. e., for t = tanh

1

l+&= cosh H
K=

jfl =~ tan 19). The roots 0, of the numerator in (11) are ~2 – jzt

()

sinh J 2
given by 1- — (n even). (20)

[I+ fl’-hz= sinh H

i.e.,

( Cos 0,
cosh n cosh–l —

)
.*$ The values of the roots t,’, t,”given by (15) and (16)

Cos 80
are either real, or occur in complex conjugate pairs. For

example when n is odd there is a real root for r = n, and

the others occur in complex conjugate pairs (r, n – r) for

Cos 9, D T =1,2,..., ~(n–1). Eq. (18) becomes, for n odd,
n cosh–l — — = cosh–l — + imr

Using (5) this

Cos or =

. .
Cos 00 Ii I r(t) 12

7=1, 2.. ., n).7 P2 (~2 – jn2) *(n-l) (tz – &2) (~2 – ~r2*)
—_ —.

becomes
rI . (21)

(1 + ,6’) (t’ – L“) ,=, (t’ – t;’) (P – t;’*)

cosh (l/n cosh–l ,f3/h + j%r/n)
(12) As previously stated, r(t) must have no poles or zeros in

cosh (l/n cosh–1 ,f3/lz) “ the right half plane, leading to the formula

V=l, z,. ... n)
P (t+ t.) *(”-’) (t+ t,) (t+ f,*)

‘— II (22)

This may now be written in terms of tan2 0, and hence ‘(t) = <1 + p’ (t+ t.’).=l (t+ h’)o + L’”)

generalized to give the complex roots
where the real parts of the t,, G’ are all positive. Eq. (22)

where

cosh2 J/n
t,2=l– — (13)

is further simplified by forming the product

cosh2 (J/n + jr~/n)
(t+ f?.’)(f + L’*) = ~’+ (L’+ L’*)t + [ L’1’

and deriving expressions for the coefficients of this

J = cosh–’ Pjk. (l+) quadratic in t from (16), i.e.,
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T; = (t: + t;*) =
w

2 COSh2 J/n(cosh 2H/n COS 2mr/$i? + 1)
21– -

(cosh 2H/n + COS 2mr/n)’
+ Ih’1’

1
(23)

~(cosh 2(H + ~)/?z – COS 2r~/tz)(cosh 2(H – ~)/?z – COS 2mr/lz)
\ t;]z ❑=

(cosh 2H/n + cos 2rr/n)
(24j

Similar expressions for Tr = (f, +tr*) and \ GI 2 are ob-

tained by substituting J for H in (23) and (24). All

factors in (22) now have positive real coefficients, com-

plex numbers having been eliminated.

The generalized reflection coefficient for n even is

similarly

<8’ – h’(t + kz) (t + L)
——

‘(t) = <1+ p – h’(t + tn/2’)(~ + t;)

. *fi’ y+ (t, +i,*)t+ \ trl’]—.
,=, [t’+ (t,’+ t/*)l!+ It;/’] “

(25)

Eqs. (22) or (25) express r (t) as the quotient of two posi-

tive real polynomials of the nth degree, and from them

the input impedance Z(t) is derived from the formula

1 + r(t)
z(t) =

1 – r(t)

P.(t)

= Q.(t)
(26)

where l’.(t)and Q.(t) are positive real polynomials of the

nth degree.

The next step in the synthesis is to find the values of

the impedances of the n lines of electrical length O,

terminated by lines of unit impedance (Fig. 2) which

gives this value of Z(t). In terms of the propagation

coefficient -y [(9) ] the transfer matrix of a single line

element of impedance Z is

[

cosh y Z sinh y

1/2 sinh 7 cosh -y 1 ‘7+42 :1 ’27)

where

t = tanh y.

Hence, the over-all transfer matrix for n elements is

1

[

A (t) B(t)

1= (1 – t,)= c(t) D(t) “ ’28)

The input impedance is given by

24(t) + B(t)
z(t) == —

D(t) + c(t)
(29)

where A (t),D(t) are even and B(t), C(t)are odd poly-

nomials in t.

——. —

Now if (26) is written

EPn(t)+ oPn(t)
z(t) =

EQ.(t) + OQ.(t)
(30)

where E and O refer to the even and odd parts of the

polynomials P.(t)and Q.(t), it is clear that the over-all

transfer matrix is

1

[

EPn(t) oPn(t)

1(1 – t’)”f’ OQ.(t) EQ.(t) “
(31)

This is the product of n matrices similar to that of (27),

-i. e.,

In order to express the over-all matrix (32) as the

product of its constituent matrices, it is p remultiplied by

the inverse matrix

1

[

1 – Zlt

1 – tz = –t/zl 1 1
(33)

and the value of 21 is obtained from the condition that

all elements of the resulting matrix must be divisible

by (1 – t’).This process is repeated to give all im-

pedances 2, as a function of the original variables@ and

h of (6).

Example n =2: As an example of the synthesis pro-

cedure it is useful and instructive to derive the im-

pedances for a two-element coupler. This is a simple but

important case; for example, one can a thieve a band-

width of 5:1 for a coupling of 3 db + 0.5 db, or a band-

width of 4:1 for a coupling of 10 db t 01.5 db.

With n = 2 the roots given by (15) amd (16) are all

real, reducing to

cosh2 J/2 + sinhz J/2 2fi
tlt = _—

sinh 2 J/2 – p–k

t22 = o

——
,, _ sinhz H/2 + cosh2 J/2 _ <1 + ,B2 + @

tl”– ——
sinhz H/2 – ~1 + & — h

COSh2H/2 – COSh2 J12 <~ + ~’ – P
t2’2 = — ——. . (34)

coshz H/2 – 41 + f12 + h
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Applying (25) the reflection coefficient is

Eqs. (26) and (31) give the transfer matrix

1 at2 + 1 bt
(36)

l–t’ d dtz + 1

where

a= J+/32—k2+~/32—h2 (37)

Premultiplying (36) by (33) [neglecting the 1/(1 –t’)

factors ] gives the matrix

[

1 – Z,t

1[

atg + t bt

–t/z, 1 d dt’ + 1 1

[

(a – cZl)# + 1
.

1
‘dz’t’ + ‘b – “)t . (41)

–at’/Z, + (c – a/ZJt (d – b/ZJF + 1

All elements of this matrix are divisible by (1 –tz) giv-

ing the two conditions

a+l b
zl=—=——

c d+l
(42)

which are equivalent, since the determinant of (36) is

unity. Eq. (41) now reduces to

[
dbt

1[ 1

l——— 1 Z,t
d+l

1
——— (43)

1

ad
1

1
t/z2 1

a+l

giving

the coupler, and are functions of ~ and h only, i.e., of

the two parameters of the original insertion loss func-

tion [(4)–(6) ]. In designing a coupler, the coupling,

ripple and bandwidth are the quantities of interest, and

these are perhaps more conveniently expressed in terms

of J and H, themselves functions of ~ and h, as defined

by (14) and (17). The bandwidth, in terms of the electri-

cal length O of one coupling section, extends from 80 to

~ —8., where 80 is defined by (15), which may be written

in terms of J in the form

1
— = cosh J/~z . (5a)
cos 00

Simple manipulation of the basic (4)–(6) give the fol-

lowing equations for the mean coupling C db and the

coupling tolerance on ripple + R db:

sinh 2H
c = 10 logul

sinh 2J

tanh H
R = 10 loglo —

tanh J “

(45)

(46)

The bandwidth ratio (r –00)/00 as a function of the

coupling tolerance of 3-db and 10-db couplers for a

given number of elements is shown in Fig. 3. This graph

was obtained from (5a), (45) and (46).

Eqs. (3 7)–(40), (42) and (44) have been applied to

give several two-element couplers, design data for

which are as follows:

a) Coupling 10 db ~ 0.5 db

Bandwidth 0.5-2.0 Gc/s.

This data is satisfied by ~ = 0.3535, h = 0.1672. Direct

substitution of these values into the equations gives

Z, = 1.562 z, = 1.154.

Remembering that ZI and Zz are normalized even-mode

impedances of the two-element coupler, being related to

the odd-mode impedances by (2), and renormalizing to

50 ohms, gives the following ohmic values of the

impedances in the two sections of the coupler:

Z!2 = zl/c = dzl. (M) Section 1 2

Eqs. (43) and (44) are the expressions for the nor- Zoe 78.1 57.7

realized even-mode impedances of the two sections of
zoo 32.0 43.3
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Fig. 3—Coupling tolerance of 3-db and 10-db stepped
directional couplers as a function of bandwidth.

Fig. 4—Two-element coupler, 10 db + 0.5 db, 0.8-2.0 Gc/s.
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Fig, 8—Two-element hybrid.

This coupler was made in side-coupled stripline using

a ground-plane spacing of 5/16 inch and a strip thickness

of 1/16 inch. The dimensions were calculated using

Getsinger’s accurate method,’ and a phcltograph of the

coupler is shown in Fig. 4. The result for the coupling is

given in Fig. 5, which indicates the very good agreement

between the experimental results and the theory. The

directivit y is better than 18 db and the VSWR better

than 1.13 over the design frequency band.

b) Coupling 20 db f 0.6 db

Bandwidth 0.5-2.0 Gc/s

(3=0.1070, 72=0.0519.

The formulas give 21= 1.143, 22= 1.046, i.e., the follow-

ing values of the impedances in the coupler:

Section 1 2

z.. .57.4 52.3
zoo 43.6 47.8

—

g W. J. Getsinger, “Coupled bars between parallel plates, ” IRE
TRANS. ON MICROWAVE T’HEORY AND TECHNIQIJES, vol. MTT-10,
pp. 65–72; January, 1962.
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This coupler is similar in construction to a) and the

comparison between theory and experiment for the

coupling is shown in Fig. 6. The directivity was better

than 14 db and the VSWR better than 1.10 over the

frequency band,

c) Coupling 2.+4.07 db

Bandwidth 0.155-1.035 Gc/s.

This data gives J= O.8423, H=l.200, or f?=l.164,

h = 0.8487, which upon substitution in the formulas give

ZI=3.52, Z2=1.692, i.e.,

Section 1 2

z., 176 84.6
zoo 14.2 29.5

The coupler was made in the interleaved printed circuit

configuration, as described by Getsingerl’J and shown in

Fig. 7. The ground-plane spacing in the more closely

coupled section is greater than in the more loosely

coupled section in order to give reasonable dimensions,

in particular better matching between the dimensions

of the inner strips. The comparison between the ex-

perimental results and theory is shown in Fig. 8. The

directivity is greater than 20 db and the input VSWR

better than 1.2 over the band.

The phase properties of these couplers are of interest

in that, since they are asymmetric, the phase division of

the output voltages is not 90” independent of frequency,

but has a marked frequency dependence, as noted by

Sweet. 11 The phase division for the two-element cou-

plers is calculated in Appendix II 1, and the theoretical

equations (82)–(85) have been verified by measurements

on the two-element coupler c).

A. General Formulas: n = Z

It would be very useful to derive formulas for the Z,

in the general case similar to those found by Takahasilz

and Green13 for the low-pass filter. The present problem

is more complicated, however, and although it is felt

that general formulas do exist, no attempt has yet been

made to find them. It is fortunate that only a small

number of elements are ever required, for example a

10:1 bandwidth can be obtained for a coupling of 3

db t 0.43 db with only four elements.

It is quite simple to write down general formulas for

the Z, in the case of a small number of elements, al-

‘0 W. J. .Getsinger, .’(A coupled stripline configuration using
printed-circuit construction that allows very close coupling, ” IRE
TRANS. ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-9,
pp. 535–544; November, 1961.

110. Sweet, “Analysis of a two-section coupler, ” IRE TRANS. ON
~lWAVE THEORY AND TECHNIQUES, vol. MTT-10, p. 295; July,

‘; L. Weinberg and P. Slepian, “Takahasi’s results on Tchebycbeff
and Butterworth ladder networks, ” IRE TRANS. ON C~RcuI~
THEORY, vol. CT-7, pp. 88-101; June, 1960.

‘8 E. Green, “Synthesis of ladder networks to give Butterworth or
Chebyshev response in the pass-band, ” PYOC. I. E. E., vol. 101 IV,
pp. 192–203; January, 1954.

though the expressions are inevitably rather compli-

cated. As an example, take n =3. Application of (22)

gives

cosh Jt(t2 + T,t + I tI Iz)
r(t) = (+7)

cosh H (t + t~’) (t’+ T,’t + I t,’ IT

where Tl, T1’, I tl] 2and I tl’ I 2 are obtained from (23) and

(24) with the unprimed terms given by substituting J

for H. Application of (26) and (31) gives the transfer

matrix

[

adz + 1 bd’ + b,t

c3ts + CIt dzt2 + 1 1

where

ba = h(cosh H+cosh J)

C3= h(cosh H— cosh J)

aj = h(t3’ + T1’)cosh H+h T1 cosh J

d~ =h(t,’+Tl’)cosh H–hTl cosh J

bl=h(ltl’12+&’Tl’) cosh H+hltl] 2 cosh J

Cl=h(l tl’] 2+t3’Tl’) cosh H—hltl] 2 cosh J.

(48)

In deriving this matrix use has been made of the fact

that

which enables the matrix to be normalized so that the

coefficient of toin the even polynomial is always unity.

It would appear that an equation similar to (49) may

be written down for any value of n. The matrix (48)

may be broken down into its constituent matrices to

give the general formulas

a2+l b, + bl
zI=—=— (50)

C3 + c1 d2+l

6321 + 1 bl – ZI
Z2 = —

– Z/zl + 1
(51)

c1 — l/zl

b8Z, Z,
23=—=—.

21 C3Z1

(52)

It can be shown easily that the alternative forms given

in (50)–(52) are equivalent by applying the condition

that the determinant of matrix (48) is equal to (1 —t’) 3.

Similar formulas for n = 4 and n = 5 are given in Ap-

pendix IV.

Eqs. (5o) to (52) have been applied to design a

coupler of 20 db t 0.5 db over a 6:1 band, the relevant

constants being /l= 0.1063, h = 0.0495, leading to nor-

malized even-mode impedances of Z1 = 1.164, ZZ = 1.080,

Z~ = 1.030, the actual impedance values in ohms in the

three sections being as follows:

Section 1 2 3

z.. 1 58.2

1

54.0
zoo

1

51.5
42.95 46.3 48.55
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Fig. 9.—Three-element broadside-coupled stripline
coupler, 20 db + 0.5 db, 0.5–3.0 Gal/s.
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Fig. 10—Three-element 20-db coupler.

The coupler was constructed in broadside-coupled strip-

line, as shown in Fig. 9, using Cohn’s formulas.11’lb The

remarkably good agreement obtained between theory

and experiment is shown in Fig. lo. The directivity is

better than 20 db and the VSWR better than 1,20 over

the band.

III. PRACTICAL DISADVANTAGES OF

MULTI-ELEMENT COUPLERS

The main difficulty in applying the theory is the fact

that the coupling of the tightest coupled element (con-

sidered as a single-element coupler) is always consider-

ably tighter than the actual over-all coupling. This is not

a serious drawback for loose couplers, e.g., the coupling

corresponding to Z1 in the above example of a 20-db

coupler is 16 db, which is easy to manufacture. In the

case of 3-db couplers the tightest ccmpling may become

extremely tight. Preliminary calculations on a four-

element 3-db coupler for a bandwidth of 10:1 indicate

that the tightest coupling is 1 db, which should be possi-

ble to manufacture, however.

Another difficulty is that it is necessary to maintain

very close tolerances on all dimensions, and in particular

14 S. B. Cohn, “Characteristic impedances of broadside-coupled
strip transmission lines, ” IRE TRANS. ON MICROWAVE THEORY AND
TECHNIQtJES, vol. MTT-8, pp. 633-637; November, 1960.

16S. B. Cohn, “Thickness corrections for capacitive obstacles and
strip conductors, ” IRE TRANS. ON MICROWAVE THEORY AND TECH-
NIQUES, vol. MTT-8, pp. 638–644; November, 1960.

the electrical lengths of the sections must be all equal.

Multiple reflections within the coupler and at the ends,

where it is joined to the input lines, may also be trouble-

some.

The problems of input VSWR and direc tivity are also

associated with undesirable internal reflections within

the coupler, and in differences in the effective electrical

lengths between the even and odd modes. The introduct-

ion of dielectric which affects the velocity of one mode

with respect to the other in such a way as to cancel the

unwanted signal in the isolated arm would appear to

be a useful nonempirical way of obtaining good per-

formance.

IV. CONCLUSIONS

Having proved that a lumped-element ladder network

forms a prototype for a stepped-impedance filter, it has

been shown how to synthesize a class of asymmetric

multi-element directional couplers. The synthesis leads

to explicit formulas for the essential parameters, i.e.,

the normalized even-mode impedance of each coupler

element, as a function of the bandwidth, coupling and

ripple. Examples of two- and three element couplers have

been made and tested, giving excellent agreement with

the theory. It now seems possible to design 3-db co uplers

for operation over bandwidths of one decade or more.

The phase division is highly frequency dependent, but

by careful choice of reference planes in the output ports,

this can be made approximately 90° over the bandwidth

of the coupler.

&’F’ENDIX I

EQUIVALENCE BETWEEN A IMULTI-ELEMENT

DIRECTIONAL COUPLER AND A STEPPED-

lMPEDANCE FILTER

The directional coupler shown in Fig. 1 consists of

two identical lines 1–4 and 2–3 with uniform spacing

over the electrical length O. These lines are terminated

by input and output ports of characteristic impedance

unity. The coupler may be analyzed by the method of

Reed and Wheeler,16 which also gives a good physical

picture of the directional coupler operation. The

coupled lines may be analyzed in two modes known as
the even and odd modes.z,8 In the even mode, Fig.

11 (a), in-phase signals are applied to ports 1 and 2 and

a voltage maximum occurs on the line of symmetry. A

magnetic wall may be located at the symmetry plane

without affecting the field distribution in this mode.

The odd mode is shown in Fig. 11 (b), when out-of-

phase signals are applied to ports 1 and 2 and a voltage

zero occurs on the line of symmetry. Hence an electric

wall (short circuit) may be located without affecting the

operation. The electric field distribution for the two

16J. Reed and G. J. Wheeler, “A method of analysis of symmet-
rical four port networks, ” IRE TRANS. ON MICROWAVE THEORY AIW
Techniques, vol. MTT-4, pp. 246-252; October, 1956.
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I

1

(c) (d)

Fig. 1l—Reed and Wheeler directional coupler theory.

modes is shown in Figs. 11 (c) and 11 (d) for the case of

coupled striplines. In each case, the analysis reduces to

that of a two-port network and, by superposition, the

sum of the two cases is equivalent to a single signal of

unit amplitude applied to port 1.

The amplitude and phase of the signals emerging

from the four ports areld

A2 = *(ro, – r..)

As = *( T., – Too)

Al = }(T08 + TOO) (53)

where I’OS and I’00 are the reflected waves, and To, and

TOOare the transmitted waves, for the even and odd

two-port networks, respectively. The analysis of the

two-port networks is most easily carried out by use of

the transfer matrix of each, remembering the following

results:

A+ B–C– D
r=

A+ B+C+D
(54)

2
T=

A+ B+C+D
(55)

where 17 and T are the reflected and transmitted waves

with a matched load on the output port, and where the

matrix elements are normalized with respect to this

load impedance. In the case of the coupled transmission

lines, the transfer matrix for the even mode is

[

Cos e ~ZO. sin 9

(y’ sin O)/Z., cos O 1
(56)

and for the odd mode it is

[

Cos e jZOO sin O1(jsin /3)/200 cos O “
(57)

Application of (54) and (55) to these transfer matrices

gives

r., =
j(ZO, – I/ZC,) sin 0

2 cos 8 + j(ZO, + 1/2..) sin O

r.. = —
j(ZOO – I/ZOo) sin O

2 cos O + j(ZOO + 1/200) sin 8

2
TO, =

2 cos 9 + j(Z08 + l/ZO,) sin O

2
TOO= (58)

2 cos 0 + j(ZOO + 1/200) sin O “

When the condition

Zoezoo = 1 (2)

is satisfied (58) reduces as follows:

roo = – r.. =
j(Z.e – 1 /ZO,) sin O

2 cos 8 + j(ZO. + I/ZO,) sin O

2
TO. = Too = . (59)

2 cos t7 + j(zo. + l/Zo.) sine

From (53) the signals emerging from the four ports of

the directional coupler are then:

.4, = o (60)

Az = roe =
j(ZOe – I/ZO,) sin d

2 cos O + j(ZO. + 1/2.,) sin O
(61)

A~=O (62)

2
.44 = T.. =

2 cos 0 + j(ZO, + I/ZOe) sine
. (63)

Eqs. (60) and (62) show that the coupler is perfectly

matched and isolated at all frequencies, while the

coupling to ports 2 and 4 vary with frequency.

The proof that the analysis of the directional coupler

is equivalent to that of a stepped impedance filter

[providing (2) holds] is now evident from (61) and

(63). These are simply the reflection and transmission

coefficients respectively of a uniform transmission line

of electrical length 19 and characteristic impedance

2.,, normalized to its input and output terminations. It

is a trivial extension to show that the multi-element

coupler retains the perfect VSWR and isolation property

if each element has the same effective characteristic

impedance, i.e., if

Zoelzool == 2..22002 = . . . = Z..,LZOO,L = 1 (64)

and hence the analysis of this stepped coupler is iden-

tical to that of a multi-element stepped filter, as shown

in Fig. 2.

The simple formulas for the power insertion loss be-

tween arms 1 and 4 of the directional coupler, e.g., (1)

and (3), are given by application of the well-known

formula

L=l+~(A –D)2–~(B– C)2 (65)

where .4 and D are the real and B, C the imaginary

elements of the transfer matrix for a lossless network.
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APPENDIX II

GENERAL SYNTHESIS OF TRANSMISSION-LINE STEPPED-

IMPEDANCE FILTERS

Riblets has proved that a rational function of t= tanh

O (in Riblet’s notation t = l/P) with real coefficients

written in the form

.4 (t) + B(t)
z(t) =

D(t) + c(j-
(29)

with A and D even and ~ and C odd functions of t,

is the input impedance of a stepped-impedance filter

with equal line lengths @ if

1) Z is a positive real function of t, and

2) ll(t)D(t) – B(t)c(t) = C’(1 – t’)” (66)

where Cr is a constant.
Leo ~ounglT has pointed out that a third condition is

required, namely that

3) The degrees of the numerator and denominator

in (29) are the same (otherwise a stub will be required).

Riblet’s theorem may be extended by noting that

any two-port lumped-element ladder network consist-

ing of simple series reactance and shunt susceptances

terminated by pure resistances has a transfer matrix

of the form

[

A (p) B(p)

C(P) D(p) 1
(67)

where P is the complex frequency variable, .4 (~), D(p)

are even functions of P, and B (P), C(P) are odd functions

of P. The insertion loss is therefore

L= 1++(A – D) ’–j(B– c)’ (68)

and the square of the magnitude of the input reflection

coefficient is

~(.1 — D)j — *(B — C)a
INP)12= . (69)

1 + +(A – D)’ -– *(B – c)’

Now if the frequency variable is replaced by a linear

function in cos O and sin 0, then it is easily shown, by

multiplying the numerator and denominator of (69) by

1
— = (1 – ~2)n,

COS2’ e

that

Ir(f)l’=

f,(t’) + j’(t’l

(70)
(1 – f’)”+ -f,(L’) + j-,(t’) “

17 L. Young, “Concerning Riblet’s theorem, ” IRE ‘~llAiws. ON
MICROWAVE ‘1’HEOR~ AND TECHNIQUES, vol. h’ITT-7, pp. 477-478;
October, 1959.

Richards7 has shown that the right half of the p plane

maps into the right half of the t plane, and since Z(O)

is positive real therefore Z(f) must be positive real,

proving that condition 1) holds. The impedance Z(t)

obtained from (70) will give (29). Since Z(t) is positive

real, all the coefficients appearing in Z are of the same

sign, and the degrees of the numerator and denominator

differ at most by unity. However, in the case of a proto-

type ladder network where the poles of the insertion

loss function are all at infinity, this difference is zero.

The reflection coeilicient is

(#l-D )+( B-c’)
m)=(A+D)+(3+c) (71)

giving

\r(t)l’=
(.4 – D)’ – (B – c)”

(A+ D) ’–(B+C-; ”
(72)

Eqs. (70) and (72) are identical, and equating the dif-

ferences between the numerator and denominator of

each expression for F(t) 2 gives

.4(t) . D(t) – B(t) C(t) = ~(1 – t’)~

which is (66), i.e., proving condition 2). The following

theorem may now be stated:

An insertion loss function of the form

L=l+[~~(a cos@+bsinfl)]’

+ [~’(a cos O + b sin 0)]2 (73)

can be realized as a stepped impedance filter with

real positive characteristic impedances if the function

L = 1 + [fl(oJ)]’ + [.f2(@)l’ (74)

having all its poles at infinity, is realizable as a two-

port ladder network consisting of simple lossless

series reactance and shunt susceptances terminated

by resistances.

The restriction that the impedance function shall

have a numerator and denominator of equal degree is

implied by the form of (74), since this has all its poles

at infinity, and therefore there is no need to state the

restriction explicitly in the theorem.

The prototype function considered in the present

context is given by

L = 1 + ~2 – lJ’T.2(W) (75)

and it is quickly proved that this satisfies the require-

ments of the above theorem. The only difference be-

tween (75) and the usual Chebyshev insertion loss func-

tion encountered in ladder network filter theory is in

the sign of the IzzTnz (u) term. Eq. (75) can still be

physically realized however, since the roots of I I’(@) I 2

formed from it are similar, giving

I r(jw) ]’ = r(ja) .r(-j@) (76)

with the roots of r (j.o) occurring as complex corij ugate
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pairs. Hence r(P) (where P = a +ju) can be selected The phase difference is given by (54),

to be analytic in the right-half plane, i.e., Z(d) is posi-

tive real, a necessary and sufficient condition for the
@ = tan-l (Kl cot 0)

physical realization of the insertion loss function of where

(75). Application of the above theorem shows that the

transformation CO-+COS 19/cos 00 in (75), giving (6), en-

ables the resulting insertion loss function to be realized

as a stepped impedance filter.

An alternative and possibly more direct proof that

(6) can be synthesized as a stepped impedance filter

is obtained by applying the reasoning which proved the

theorem of this appendix, and showing that (66) is true.

The main text shows that Z(t) is positive real, and

(26) that the numerator and denominator of Z(t) are of

the same degree.

APPENDIX III

PHASE PROPERTIES OF THE ASYMMETRIC COUPLER

The couplings to arms 2 and -4 of the asymmetric

coupler are given by 17 and T (see Fig. 2) derived from

the transfer matrix (7), i.e.,

~ = (An – I)n) +j(l?n – cm)
(77)

(An + D,,) +j(Bn + c.)

2
T=—

(.4. + D.) + j(ll. + c.)
(78)

and the power division between arms 2 and 4 is

r (A. – D.) +j(l?n – c.)
~=F= —.

2
(79)

In the case of a symmetric coupler, e.g., the three-

quarter wavelength coupler described previously, 8 the

phase difference between r and T is 90° at all fre-

quencies because A.= D.. This condition does not hold

for an asymmetric coupler, and the phase difference is

B. – C.
4 = tan–l

.4. –D. ”
(80)

Thus, while the symmetric 3-db coupler can be used

as a 90° hybrid, this is not immediately true of the

asymmetric 3-db coupler, which has a phase shift ~

varying in an approximately linear fashion over the

operating frequency band of the coupler. However, by

the addition of a length of line to one of the output

arms, this phase variation can be approximately can-

celled, and a usable 90° hybrid performance obtained.

In other words, reference planes exist in arms 2 and 4

where the phases differ by approximately 90° over the

band.

As an example take the case of the two element

asymmetric coupler. This has a transfer matrix given

by (36) to (40), but in this simple case it is preferable

to form the matrix directly by analysis, giving

[

COS2e — (21 sinz 0)/22 j(Z1 + Zz) sin 8 cos 0

1
(81)

j(l/Zl + l/ZJ sin O cos O cos’6 – (Zz sin’ 0)/21 “

July

i.e.,

(82)

~1 = (z, + z,) – (1/2, + 1/22)

(22/2, – 2,/2,) “
(83)

At midband O = 7i-/2 giving q5= O. At zero frequency

+=7r/2, and at 0 =7, 4 = –7r/2, so that by adding a

line of electrical length 7r/2 at midband to @ the phase

will be exactly 7r/2 at these three points. In order to

decide on which arm to include the extra line it is

necessary to find the exact meaning of the sign of the

phase. Negative phase implies a forward traveling

wave, i.e., one emerging from an output arm, so by

writing

then

Cp=ti, -%,. (84)

Hence, the extra line must be added to arm 4, which

is the one leading into the closely coupled element. The

phase difference between the new reference planes is now

4=@+ O=tan-’(Klcot0)+0 (85)

where in the range O <0 <r

— ~ < tan-’ (KI cot @ < + ~ “ (86)

Maximum and minimum values of ~ occur when

d+
= o, i.e., for fl~ = tan–l + v’K1 (87)

z

and these values of O substituted in (85) give the points

of maximum deviation of ~ from 90”. For example, in

the case of a two-element coupler designed to give a

coupling of 3 db +0.9 db overa 7:1 band then ICI =2.8,

giving

On, = 59.3° and 110.7°.

Substituting in (85) gives

= 118.6° and 61.4° (respective y)

i.e., a phase variation of f 28.6° about 90°.

When the coupling ripple level is decreased, the

phase linearity is improved, e.g., for a 5:1 bandwidth

giving f 0.4s db ripple then the phase variation reduces

to +22.2.0

Variations of this order of magnitude are quite ac-

ceptable in many applications. In cases where the phase

is required to be much more exactly equal to 90°, then

the symmetrical form of the coupler should be used.
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APPENDIX IV

GENERAL FORi&LAS

.4. n=4

Remembering (20), (25) becomes

Coupled-Transmission-Line Directional Couplers

giving the transfer matrix

[

akt4 + aztz + 1 b& + blt

1
(88)

c3t3 + Clt d# + d,t’ + 1

where

al

}
= h(sinh H f sinh J)

d,

b~

}
= h(T~ + ti + tl) sinh H 3: h(TI + TJ sinh J

C3

az

}-

h[ I t<[2+ T~(tZ’ + t4’) + f,’t(] sinh H

d, – f h[ I t112 + Td~] sinh J

bl

}

h[T<t2’t.’ + I h’ 12(t,’ + h’)] sinh H——
c1 ~lzlt112tqsinhJ.

In the above equations the plus sign refers to the upper

quantities on the left-hand side, and the negative sign

to the lower quantities. The roots I tl’]2,T1’, etc., are

obtained from (23), (24), et seq., with n =4. In deriving

the equations a relation similar to that of (49) has been

used, namely that

k \ tjI’tj’t/sinh H = 1 (89)

which is readily proved.

Expressions for the four normalized even-mode im-

pedances are now obtained by breaking up matrix (88)

into its constituent matrices, giving

a4+a2+l b: + b,
ZI = —

C3 + c1 d,+d, -kl

c3ZI — ak + 1 ddZl – ZI + bl
Z2 = ——

aA/Zl — l/ZI + c1 b,/Z, – dk + 1

a4Z2/Zl + 1 bl–Zl–Zz
Z3 =

c1—l/zl —l/z2 d,ZJZ2+ 1
ZIZ3 dlZIZ~

z4=—=—

a4Z2 z, “

B. n=5

Eq. (22) gives

cosh J
r(t) = —

cosh H

t(tz + T,t + I t,12)(t2 + Td +

(t+ t,’) (t’+ T/t+ I t,’ 12,(t’+ T,’t

(90)

(91)

(92)

(93)

leading to the transfer matrix

[

a4t4 + ad2 + 1 b,t,

cd5 + csts + clt dd4 +

where

bb

1
= h(cosh H f cosh J)

65
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+ b,t’

dzt2 + 1 1
(95)

a41=k(T{ + T,’ + 16’) cosh H ~ II(T, + T,) cosh J
dA

b,

}

k[l t;lz+ lt,’1~ + T{ T2’+t5’(T; + T;)] cosh H
——

C3 ~ [/tl]2+ [tz\2+TlTz]cosh J

a2

}

h[T<l t,’ [2+ T,’1 t,’\2 + t5’(tl’2 + I t;l’

d2 = + T{ T2’)] cosh H ~ h[T,ltz12+ Tzl t,\2]cosh J

bl

1 h[lh12\ t;1’+t5’(T; ]t~’\2+ T2’1t1’/2)]cosh H——
c1 -&hit, j21t,lzcosh J,

and the normalized even mode impedances are

a4+a2+l b~+bs+bl—— (96)
C5+C3+1 d,+dz+l

(c, – CI)ZI + a,
‘d4 – l)Z1 -’@fi (97)

(al – 1)/Zl – c,+ c1 = (b, – bl)/Zl + d,

a4Za/Zl – c5(ZI + 22) + 1

65zl/’z2 + Cl – (1/’zI + l/z2j

b,Zz/Zl + b, – (Zl + Z,)

d,Z,/Z, – bJ(Zl + Zz) + 1
(98)

65zlz31z2 + 1

c1 – (1/zl + 1/22 +

b, – (Z, + Z2 + z3)

b,Z,/Z,Z, + 1

Z,Z4 ZzZ.ibb
—— . — .
. —

l/z3)

(99)

(100)

Although at first glance the general formulas seem

complicated, they are quite simple to apply and would

be particularly appropriate for a computer program.

They have a good deal of symmetry, which, as sug-

gested in the main text, might imply the existence of

general formulas for any value of n.
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