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AcCCURACY
Real Pari of Dielectric Constant

Measurements of the rod diameter were made with a
bench micrometer. All samples had some taper along
the length and some ellipticity about the cross section.
It is estimated that the effective diameter was measured
with an accuracy of ¢ per cent. This would contribute
an error of 1 per cent in the measurement of X’.

The resonant frequency was determined by taking
the average of the two frequencies at which the output
was a given fraction below the resonant output. Since
all frequency measurements were made using a fre-
quency counter, this method is very precise. A maxi-
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mum error of 2 per cent was attributed to the electrical
measurement on the basis of spread in results using dif-
ferent cavities. The maximum over-all error in measur-
ing K’ was thus 3 per cent.

Tan é

As noted above, the loss tangent of the cavity was
determined by use of (5). The measurement was made
twice using a different value of « each time. If the two
different determinations disagreed by more than 3 per
cent additional measurements were made. A frequency
counter was used in making the measurements. The
maximum over-all error in tan § was taken as 0.0005.

General Synthesis of Asymmetric Multi-Element Coupled-
Transmission-Line Ditrectional Couplers®

RALPH LEVY?

Summary—An exact synthesis procedure is derived for a class of
asymmetric multi-element coupled-transmission-line directional
couplers with any number of elements. It is based on the equivalence
between the theory of the directional coupler and that of a stepped
quarter-wavelength filter. This can be treated using Richards’
theorem for the synthesis of transmission-line distributed networks,
as described previously by Riblet. The method is extended to give a
general expression for the input reflection coefficient of the stepped
filter, which corresponds to the voltage coupling of the directional
coupler. Explicit formulas for the parameters of two, three, four and
five couplers are derived and the extension to larger number of
elements is straightforward. Two and three element couplers have
been designed on this theoretical basis, and show excellent agree-
ment with theory, for example a three element coupler of 20 db 4+ 0.5
db over a 6:1 bandwidth, and a two element coupler of 3.2 db +0.85
db over a 6.7:1 bandwidth. It is possible to design a 3-db +0.43 db-
coupler for decade bandwidths using only four elements. The 3 db-
couplers may be used as 90° hybrids by careful choice of reference
planes in the output parts.

I. INTRODUCTION

OUPLED-TRANSMISSION-LINE directional
couplers have been described by a number of
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Shimizu and Jones®). The simple quarter-wavelength
directional coupler has perfect isolation and perfect
input match, but the coupling varies according to

L=14%Z, —1/Z,)2sin?6 (1)

where L is the power insertion loss from the input to
arm 4 (Fig. 1). Z,, and Z,, are the impedances of the
even and odd modes in the coupled line normalized to
the impedance of the input lines, and are related by

Zeroo = 1. (2)

Eq. (1) indicates that a useful bandwidth of rather
more than one octave is obtained from the simple
quarter-wavelength section. Shimizu and Jones® have
described how much greater bandwidths may be ob-
tained by cascading three coupled-line sections to form
a three-quarter wavelength coupler. Considerable sim-
plification of their equation (10) for the coupling is
possible (see Appendix I), leading to the formula

o ) ()

203,2 ZDE 2
Ve o
ZOB Z06/2

-sin f cos?f — (
where, as in (1), L is the insertion loss from the input

# J. K. Shimizu and E. M. T. Jones, “Coupled-transmission-line
directional couplers,” IRE TRaNS. ON MICROWAVE THEORY AND
TrcaNIQUES, vol. MTT-6, pp. 403-410; October, 1958.
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Fig. 1—Quarter-wavelength directional coupler.

to arm 4. This equation can be analyzed quite readily
for any coupling and bandwidth required, e.g., for a
coupling of 3 db+0.4 db the bandwidth is 5:1. In spite
of this large bandwidth the three-quarter wavelength
coupler is not optimum in the sense of having maximum
bandwidth for a given coupling tolerance. Eq. (3) is a
cubic in sin® § or cos? @ and the coupling characteristic
should have two equal ripples to be of optimum form.
In fact it has only one ripple. The reason for this is the
restriction placed on the form of coupling by making the
two outer elements equal. When the three elements are
allowed to be all unequal, then it is possible to obtain
two ripples in the coupling characteristic. Fel’dshtein?
has shown that for such an #n-element asymmetric
coupler the power division between arms 2 and 4
should take the form

[ 5122 cos d
n = TS—m[—Z = 3*— T’ (;)-;5) 4
where
1/cos 8y = cosh <—i— cosh™! ,8/11) (5)

and the pass band extends from 8, to = —8,. The coupling
or insertion loss to arm 4 is then

L

p
— 14— h?w(cos ) (6)

cos By

2

Ky

T, denotes the Chebyshev function of the first kind of
degree #.

A key to the solution of the synthesis problem is
found by noting that the couplings to arms 2 and 4 are
respectively the reflection and transmission coefficients
of a cascaded set of transmission lines of electrical length
6 with the impedances Z,, Z;, + - -, Z, (where as an
abbreviation Z, is written for Z,,,) terminated by lines
of unit impedance. This equivalence, which is illustrated
in Fig. 2, has been proved in current papers,®® but it is

¢ A, 1.. Fel'dshtein, “Synthesis of stepped directional couplers,”
Radiotekh. 1 Electron., vol. 6, pp. 234-240; February, 1961.

5 R. Levy, “Coupled Transmission Line Theory and the Design of
Ultra-Broadband Microwave Components,” presented at IEE Con-
ference on Components for Microwave Circuits, London, England;
September 1962.

6 L. Young, “The analytical equivalence of T.E.M. mode direc-
tional couplers and transmission-line-stepped-impedance filters,”
Proc. I.E.E,, vol. 110, pp. 275-281; February, 1963. Leo Young
has informed the author that he has independently reached the con-
clusion that the analysis of T.E.M. mode couplers is equivalent to
that of quarter-wave stepped transformers, and has heard of similar
work by S. B. Cohn and H. J. Riblet.
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Fig. 2—(a) Equivalence between an zn-element coupler
(b) and » stepped quarter-wavelength lines.

presented in Appendix I for completeness. Its applica-
tion leads immediately to the simple derivation of equa-
tions such as (1) and (3). In the general lossless case of #
elements the transfer matrix is given by

jZT sin 6 An ]Bn
-1 @
cos @ jCu Dy
and the insertion loss to arm 4 of the coupler is the inser-
tion loss of the two-port network, i.e.,

L=1+4 i(An - Dn)z + %(Bn - Cn)z- (8)

"[ cos @
}zll j/Z,sin 8

Since (8) can be expressed as a polynomial in powers of
cos? @ of degree n, the synthesis of the optimum coupling
characteristic may be performed by equating coeffi-
cients of cos? # in (8) with corresponding coefficients in
(6). This leads to # simultaneous equations in the #
variables Zi, Zs, - -+, Z,, which may be solved for
values of # up to n =3. Beyond this value of # the proc-
ess rapidly becomes untractable. A solution of the prob-
lem is available, however, by recourse to modern
synthesis techniques.

II. SyNTHESIS PROCEDURE

The synthesis is performed using a theorem due to
Richards’ and extended by Riblet® to the synthesis of
quarter-wave impedance transformers. The present
problem is similar to that treated by Riblet, but before
applying the techniques, it is first necessary to extend
his theorem to the synthesis of any transmission line
stepped-impedance filter, as described in Appendix II.
It follows that (6) can always be synthesized as a
stepped impedance filter with real positive characteristic
impedances. Introducing the propagation function v,
given by

v=o+j0 )

7 P. I. Richards, “Resistor-transmission-line circuits,” Proc. IRE,
vol. 34, pp. 217-220; September, 1948.

8 H. J. Riblet, “General synthesis of quarter-wave impedance
transformers,” IRE TRANS. ON MICROWAVE THEORV AND TECH-
NIQUES, vol. MTT-5, pp. 36-43; January, 1957.
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where @ is the electrical length of the uniform line, and
o is the attenuation coefficient, then Richards showed
that the frequency transformation

! = tanh vy (10)
maps the complex impedance plane Z(7) into the plane
Z(t), where ¢t is a new complex variable equivalent to
the complex frequency variable in ordinary lumped-
element synthesis theory. Thus Z(¢) satisfies Brune's
condition that it must be a positive real function if it is
to represent a realizable impedance. For this condition
to hold the reflection coefficient I'(¢) must be a function
which is regular (z.e., with no poles) in the right-half
plane. In the case of minimum phase networks there is
the additional condition that I'(f) has no zeros in the
right-half plane.

The required insertion loss function is given by (6),
so that the square of the reflection coefficient is

cos 6
‘82 — ]l2Tn2
1 < cos 8 > cos By
T
cos 8

L cos §
148 - h2Tn< >
cos By
lI‘(cos 8/cos 6y) ’ 2 represents the power reflection coeffi-
cient of a lossless network, and it is necessary to gen-
eralize (11) to give ’I‘(t)‘ 2. The generalization will
reduce to (11) for real frequencies (i.e., for ¢=tanh
j8=7 tan 6). The roots 6, of the numerator in (11) are
given by

: L—1
= (11)

_, cos b, B8
cosh | # cosh™ = 4+ "

cos Gg
z.e.,
cos 0, 8
#n cosh™1 — = cosh™! — 4+ jrr
cos by h
r=1,2,--., n).

Using (5) this becomes
cosh (1/n cosh™ 8/h + jrw/n)
cosh (1/n cosh=1 8/k)
r=1,2,---,%)

cosf, =

(12)

This may now be written in terms of tan? 6, and hence
generalized to give the complex roots

cosh?J/n
b=t . (13)
cosh? (J/u + jron/n)
where
J = cosh™' 3/h. (14)
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After some trigonometrical manipulation (13) can be
written in terms of its real and imaginary parts as

cosh? J /n(cos? rr/n cosh? J /n—sin? rr/n sinh? J /n)

(cosh? J/n — sin? rr/n)?

12=1—

_cosh? J/n sin 2rm/# sinh 27 /%

15
2(cosh?® J/n—sin® rr/n)? (13)

Similarly the roots of the denominator in (11) are given
by

cosh? J/n(cos? ra/n cosh? H/n—sin? ro/n sinh? H/xn)
(cosh? H/n—sin? rir/n)?

_cosh? J/n sin 2rmr/n sinh 2H /n

; (16)
2(cosh? H/n—sin? rr/n)?
where
H = cosh~1+/1 4+ B2/h. 17
The expression for ‘I’(t) [ 2 finally takes the form
t2—f2 t?_tﬁ,,,tZ_tnz
O G [ty ERRL el N
(z?. _— f1/2)(t2 . t2’2) P (t2 —_ ZtnIZ)
32 cosh J \?
{ = < > (n odd) (19)
X - { 14 52 cosh H
B 82 — h* sinh J \?2
= = ( > (n even). (20)
T+8 — ki \sinh H

The values of the roots £2, t,’2 given by (15) and (16)
are either real, or occur in complex conjugate pairs. For
example when 7 is odd there is a real root for 7 =n, and
the others occur in complex conjugate pairs (r, #—r) for
r=1,2, -, X(n—1). Eq. (18) becomes, for » odd,

RYOIE
B '82 (ﬁ — tn2> 3 (n—1) (f?‘ — tr2) (1'2 —_ tr2*) '
TAF) (Bt o (2= D — )

1)

As previously stated, I'(f) must have no poles or zeros in
the right half plane, leading to the formula
B (¢4 t) 3D ¢+ )0+ 15

= T (22)
VI ) S @R+ S

r'@)

where the real parts of the ¢,, ¢ are all positive. Eq. (22)
is further simplified by forming the product

2

t/

C+1tHe+u* =2+ ¢ + 6+

and deriving expressions for the coefficients of this
quadratic in ¢ from (16), i.e.,
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2 cosh? J/n(cosh 2H/n cos 2rz/n -+ 1)

1= i - g/ T

]

Similar expressions for I.=({.+4*) and
tained by substituting J for H in (23) and (24). All
factors in (22) now have positive real coefficients, com-
plex numbers having been eliminated.

The generalized reflection coefficient for # even is
similarly

VB ~ B+ b))+ 1)

VI8 = B+ )+ 1)
pa il P S T R R
= RN T

Eqgs. (22) or (25) express I'(t) as the quotient of two posi-
tive real polynomials of the nth degree, and from them
the input impedance Z(¢) is derived from the formula

14 1@

1—T@

Pt
_ P 26)

Qu(®)
where P,(¢) and Q,(f) are positive real polynomials of the
nth degree.

The next step in the synthesis is to find the values of
the impedances of the % lines of electrical length 6,
terminated by lines of unit impedance (Fig. 2) which
gives this value of Z(#). In terms of the propagation
coefficient v [(9)] the transfer matrix of a single line
element of impedance Z is

[ coshy  Zsinh 7] 1 [ 1 Zt:I 27
1/Zsinhy coshy 1 ~1—2£lt/z2 1
where

() =

(25)

Z(1)

{ = tanh «.

Hence, the over-all transfer matrix for # elements is
1 i 1 Zit
(1 — )ni2 g[t/Z, 7 ]
1 [ A()

BT N0

B(2)
D@]. (28)

The input impedance is given by
AW + BO)
D) + CQ@)

where A (&), D(¢) are even and B(f), C(¢) are odd poly-
nomials in .

Z(1) (29)

L 23
(cosh 2H/n <+ cos 2rm/n)? + } 23)
\ _}/(cosh 2(H+T)/n — cos 2rr/n)(cosh 2(H — J)/n — cos 2rw/n) (24)
B (cosh 2H/n + cos 2rw/n)
t,| 2 are ob- Now if (26) is written
EP,(i oPrP,
70) = () + OP.(1) (30)

 EQ.() + 00.(1)

where E and O refer to the even and odd parts of the
polynomials P,(¢) and Q,(1), it is clear that the over-all
transfer matrix is

OP,(t) J .

1 [EP,,(t) o 31)

(1 =)L 0Qu(%)

This is the product of # matrices similar to that of (27),

1.e.,
[EPn(t) OPn(t):l ﬁ[ 1 Zq
00,00 E0.0J  ralyz 11
In order to express the over-all matrix (32) as the

product of its constituent matrices, it is premultiplied by
the inverse matrix

1 |: 1 —ZM:I
1—e |L—t/z, 1

and the value of Z; is obtained from the condition that
all elements of the resulting matrix must be divisible
by (1—¢%). This process is repeated to give all im-
pedances Z, as a function of the original variables 8 and
h of (6).

Example n=2: As an example of the synthesis pro-
cedure it is useful and instructive to derive the im-
pedances for a two-element coupler. This is a simple but
important case; for example, one can achieve a band-
width of 5:1 for a coupling of 3 db+0.5 db, or a band-
width of 4:1 for a coupling of 10 db +0.5 db.

With #=2 the roots given by (15) and (16) are all
real, reducing to

(32)

(33)

cosh?J/2 + sinh?J/2 28

W= sinh? J/2 8—h

1? = 0

= sinh? #/2 + cosh®J/2 _ l/g__/i +8
sinh? H/2 V14 B2~

e cosh? H/2 — cosh®J/2 _ ‘/ﬁ'fj ~8 34)
cosh? H/2 V148 +h



230 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES July
Applying (25) the reflection coefficient is
2
- (e 4/
g - YEFE B—h
VIR <¢ V1 +62+B><t V1 +ﬁ2—6>
VIt B = VI Btk
2 R 2 h)t
VB2 — 2+ 28(8 + k) (35)

VIR F A (WAL T BT OVIE e Tt VI8 — B+ AVIF e 1

Egs. (26) and (31) give the transfer matrix
1 a®+1 bt

1—el o dr+1 (36)
where
a=1+B =+ /B -1 (37
b={1+8)+ B+ hyT+p2+ 6k
+ VO +8) - B+ BT+ + 8k
+ V2608 + ) (38)
¢c=v{1+86)+ B+ hTF B+ 8k
+VA+8) — B+ BT F g2+ ph
—V28@B + B (39)
d=~1+8— 0 — /B2 — I (40)

Premultiplying (36) by (33) [neglecting the 1/(1—122)
factors| gives the matrix

1 —Zy [ at? + ¢ bt
[—t/Zl 1 ][ ct ae + 1]
_ [ (@ —cZ)i*+ 1 —dZ*+ (b — Zl)t]. (41)
—at*/Zi+ (c —a/Z)t  (d—b/Z)*+ 1

All elements of this matrix are divisible by (1 —¢2) giv-
ing the two conditions

a1 b
c  di1

(42)

1

which are equivalent, since the determinant of (36) is
unity. Eq. (41) now reduces to

abt
( 1 1 Z2t—’
a+1
l = (43)
act )z 1
La +1 L :
giving
Zz = Zl/C = dZ} (44)

Egs. (43) and (44) are the expressions for the nor-
malized even-mode impedances of the two sections of

the coupler, and are functions of 8 and % only, <.e., of
the two parameters of the original insertion loss func-
tion [(4)~(6)]. In designing a coupler, the coupling,
ripple and bandwidth are the quantities of interest, and
these are perhaps more conveniently expressed in terms
of J and H, themselves functions of 8 and #%, as defined
by (14) and (17). The bandwidth, in terms of the electri-
cal length 6 of one coupling section, extends from 6§, to
T —8, where 8, is defined by (15), which may be written
in terms of J in the form

= cosh J/#. (5a)

cos By
Simple manipulation of the basic (4)—(6) give the fol-
lowing equations for the mean coupling C db and the
coupling tolerance on ripple + R db:

C = 10 log,, 2 24 (45)
= [¢]
810 inh 27
tanh H
R = 10 IOgm . (46)
tan

The bandwidth ratio (w—#8¢)/6, as a function of the
coupling tolerance of 3-db and 10-db couplers for a
given number of elements is shown in Fig. 3. This graph
was obtained from (5a), (45) and (46).

Eqgs. (37)—(40), (42) and (44) have been applied to
give several two-element couplers, design data for
which are as follows:

a) Coupling 10 db+0.5 db
Bandwidth 0.5-2.0 Ge/s.

This data is satisfied by 8=0.3535, 2=0.1672. Direct
substitution of these values into the equations gives

Z, = 1.562 Zy = 1.154.

Remembering that Z; and Z: are normalized even-mode
impedances of the two-element coupler, being related to
the odd-mode impedances by (2), and renormalizing to
50 ohms, gives the following ohmic values of the
impedances in the two sections of the coupler:

Section 1 t 2
Zoe 78.1 57.7
Zoo 32.0 43.3
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COUPLING VARIATION

Fig. 3—Coupling tolerance of 3-db and 10-db stepped
directional couplers as a function of bandwidth.
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Fig. 7—Two-element coupler using interleaved-
strip printed circuit construction,
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Fig, 8—Two-element hybrid,

This coupler was made in side-coupled stripline using
a ground-plane spacing of 5/16 inch and a strip thickness
of 1/16 inch. The dimensions were calculated using
Getsinger's accurate method,? and a photograph of the
coupler is shown in Fig. 4. The result for the coupling is
given in Fig. 5, which indicates the very good agreement
between the experimental results and the theory. The
directivity is better than 18 db and the VSWR better
than 1.13 over the design frequency band.

b) Coupling 20 db+0.6 db
Bandwidth 0.5-2.0 Ge/s
B=0.1070, =0.0519.

The formulas give Z;=1.143, Z;=1.046, 7.e., the follow-
ing values of the impedances in the coupler:

Section 1 2
Zoe 57.4 52.3
Zoo 43.6 47.8

9 W. J. Getsinger, “Coupled bars between parallel plates,” IRE
TraNns. ON MicrowavE THEORY AND TECHNIQUES, vol. MTT-10,
pp. 65-72; January, 1962.
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This coupler is similar in construction to a) and the
comparison between theory and experiment for the
coupling is shown in Fig. 6. The directivity was better
than 14 db and the VSWR better than 1.10 over the
frequency band.

¢) Coupling 2.4-4.07 db
Bandwidth 0.155-1.035 Gge/s.

This data gives J=0.8423, H=1.200, or B=1.164,
£ =0.8487, which upon substitution in the formulas give
Z]_ = 352, Z2= 1692, i.e.,

Section 1 } 2
Zoe 176 84.6
Zoo 14.2 29.5

The coupler was made in the interleaved printed circuit
configuration, as described by Getsinger?® and shown in
Fig. 7. The ground-plane spacing in the more closely
coupled section is greater than in the more loosely
coupled section in order to give reasonable dimensions,
in particular better matching between the dimensions
of the inner strips. The comparison between the ex-
perimental results and theory is shown in Fig. 8. The
directivity is greater than 20 db and the input VSWR
better than 1.2 over the band.

The phase properties of these couplers are of interest
in that, since they are asymmetric, the phase division of
the output voltages is not 90° independent of frequency,
but has a marked frequency dependence, as noted by
Sweet.!! The phase division for the two-element cou-
plers is calculated in Appendix I1I, and the theoretical
equations (82)—(85) have been verified by measurements
on the two-element coupler c).

A. General Formulas: n=2

It would be very useful to derive formulas for the Z,
in the general case similar to those found by Takahasi!?
and Green!? for the low-pass filter. The present problem
is more complicated, however, and although it is felt
that general formulas do exist, no attempt has yet been
made to find them. It is fortunate that only a small
number of elements are ever required, for example a
10:1 bandwidth can be obtained for a coupling of 3
db £0.43 db with only four elements.

It is quite simple to write down general formulas for
the Z. in the case of a small number of elements, al-

W, J. Getsinger, “A coupled stripline configuration using
printed-circuit construction that allows very close coupling,” IRE
TRANS. ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-9,
pp. 535-544; November, 1961.

Q. Sweet, “Analysis of a two-section coupler,” IRE TRANS. ON
Microwave THEORY AND TECHNIQUES, vol. MTT-10, p. 295; July,
1962.

2 L. Weinberg and P. Slepian, “Takahasi’s results on Tchebycheff
and Butterworth ladder networks,” IRE Trans. oN CIRCUIT
TaEORY, vol. CT-7, pp. 88-101; June, 1960.

18 E. Green, “Synthesis of ladder networks to give Butterworth or
Chebyshev response in the pass-band,” Proc. I.LE.E., vol. 101 1V,
pp. 192-203; January, 1954.
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though the expressions are inevitably rather compli-
cated. As an example, take #=3. Application of (22)
gives

2 2
PO — cosh J t(2 4+ Tt + | 4:]%) 7
cosh H (¢t + &) (12 + Tu't + | 1)/ [%)
where Ty, 7Y/, ]tll zand 'tl’I 2 are obtained from (23) and
(24) with the unprimed terms given by substituting J
for H. Application of (26) and (31) gives the transfer
matrix

[ ast® + 1 (48)

bat® 4 bll]
cat® + cit

dy? + 1

where

by=h(cosh H+cosh J)

¢3=h(cosh H~—cosh J)

as=h(t;’+ 7, )cosh H+hTy cosh J
do=h{ty’ + 71" )cosh H—hT; cosh J
bi=h(|t/| 2+’ Tv") cosh H+h|4]? cosh J
61=h(| tl’l 244, T1’) cosh H—h\tll 2 cosh J.

In deriving this matrix use has been made of the fact
that

s’ | 1,"]? cosh H = 1 (49)

which enables the matrix to be normalized so that the
coefficient of £° in the even polynomial is always unity.
It would appear that an equation similar to (49) may
be written down for any value of #. The matrix (48)
may be broken down into its constituent matrices to
give the general formulas

a;+1 b5+
1= = (50)

cs+ ¢y ds+ 1
Cng —I— 1 bl - Z1
a— 12y by/Zy+ 1
bsZ VA

Z, = 3L _ 2 . (52)
Zl 63Z1

It can be shown easily that the alternative forms given
in (50)—(52) are equivalent by applying the condition
that the determinant of matrix (48) is equal to (1 —¢2)2,
Similar formulas for # =4 and #=35 are given in Ap-
pendix IV.

Egs. (50) to (52) have been applied to design a
coupler of 20 db+0.5 db over a 6:1 band, the relevant
constants being 8=0.1063, 2=0.0495, leading to nor-
malized even-mode impedances of Z;=1.164, Z,=1.080,
Z3=1.030, the actual impedance values in ochms in the
three sections being as follows:

Section ' 1 2 3
Zoe 58.2 54.0 51.5
Zyo 42.95 46.3 48.55
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Fig. 9.—~Three-element broadside-coupled stripline
coupler, 20 db +0.5 db, 0.5-3.0 Gd/s.
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Fig. 10—Three-element 20-db coupler.

The coupler was constructed in broadside-coupled strip-
line, as shown in Fig. 9, using Cohn’s formulas.* The
remarkably good agreement obtained between theory
and experiment is shown in Fig. 10. The directivity is
better than 20 db and the VSWR better than 1.20 over
the band.

I11. PracricAL DISADVANTAGES OF
Murtl-ELEMENT COUPLERS

The main difficulty in applying the theory is the fact
that the coupling of the tightest coupled element (con-
sidered as a single-element coupler) is always consider-
ably tighter than the actual over-all coupling. This is not
a serious drawback for loose couplers, e.g., the coupling
corresponding to Z; in the above example of a 20-db
coupler is 16 db, which is easy to manufacture. In the
case of 3-db couplers the tightest coupling may become
extremely tight. Preliminary calculations on a four-
element 3-db coupler for a bandwidth of 10:1 indicate
that the tightest coupling is 1 db, which should be possi-
ble to manufacture, however.

Another difficulty is that it is necessary to maintain
very close tolerances on all dimensions, and in particular

14 S, B. Cohn, “Characteristic impedances of broadside-coupled
strip transmission lines,” IRE TrANS. ON MICROWAVE THEORY AND
TECHNIQUES, vol. MTT-8, pp. 633-637; November, 1960.

15 S, B. Cohn, “Thickness corrections for capacitive obstacles and
strip conductors,” IRE TrANS. ON MicROWAVE THEORY AND TECH-
NIQUES, vol. MTT-8, pp. 638-644; November, 1960.
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the electrical lengths of the sections must be all equal.
Multiple reflections within the coupler and at the ends,
where it is joined to the input lines, may also be trouble-
some,

The problems of input VSWR and directivity are also
associated with undesirable internal reflections within
the coupler, and in differences in the effective electrical
lengths between the even and odd modes. The introduc-
tion of dielectric which affects the velocity of one mode
with respect to the other in such a way as to cancel the
unwanted signal in the isolated arm would appear to
be a useful nonempirical way of obtaining good per-
formance.

IV. CoNcLUSIONS

Having proved that a lumped-element ladder network
forms a prototype for a stepped-impedance filter, it has
been shown how to synthesize a class of asymmetric
multi-element directional couplers. The synthesis leads
to explicit formulas for the essential parameters, 7.e.,
the normalized even-mode impedance of each coupler
element, as a function of the bandwidth, coupling and
ripple. Examples of two- and three element couplers have
been made and tested, giving excellent agreement with
the theory. It now seems possible to design 3-db couplers
for operation over bandwidths of one decade or more.
The phase division is highly frequency dependent, but
by careful choice of reference planes in the output ports,
this can be made approximately 90° over the bandwidth
of the coupler.

ArpeNDIX |

EQUIVALENCE BETWEEN A MULTI-ELEMENT
DirecTIONAL COUPLER AND A STEPPED-
IMPEDANCE FILTER

The directional coupler shown in Fig. 1 consists of
two identical lines 1-4 and 2-3 with uniform spacing
over the electrical length 6. These lines are terminated
by input and output ports of characteristic impedance
unity. The coupler may be analyzed by the method of
Reed and Wheeler,*® which also gives a good physical
picture of the directional coupler operation. The
coupled lines may be analyzed in two modes known as
the even and odd modes?® In the even mode, Fig.
11(a), in-phase signals are applied to ports 1 and 2 and
a voltage maximum occurs on the line of symmetry. A
magnetic wall may be located at the symmetry plane
without affecting the field distribution in this mode.
The odd mode is shown in Fig. 11(b), when out-of-
phase signals are applied to ports 1 and 2 and a voltage
zero occurs on the line of symmetry. Hence an electric
wall (short circuit) may be located without affecting the
operation. The electric field distribution for the two

16 J, Reed and G. J. Wheeler, “A method of analysis of symmet-
rical four port networks,” IRE TrRANS. ON MICROWAVE THEORY AND
TecanIQUES, vol. MTT-4, pp. 246-252; October, 1956.
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Fig. 11—Reed and Wheeler directional coupler theory.

modes is shown in Figs. 11(c) and 11(d) for the case of
coupled striplines. In each case, the analysis reduces to
that of a two-port network and, by superposition, the
sum of the two cases is equivalent to a single signal of
unit amplitude applied to port 1.

The amplitude and phase of the signals emerging
from the four ports are®

4y = 3(To + T0p)
A2 = 3(Toe — Too)
A3 = %(Tae - Too)
A5 = %(Toe ‘|‘ Too)

f

(53)

where T',, and T',, are the reflected waves, and 7, and
T, are the transmitted waves, for the even and odd
two-port networks, respectively. The analysis of the
two-port networks is most easily carried out by use of
the transfer matrix of each, remembering the following
results:

A+B—-C—-D

= (54)
A+B+C+ D
2
T = (55)
A+B+C+ D

where I" and 7" are the reflected and transmitted waves
with a matched load on the output port, and where the
matrix elements are normalized with respect to this
load impedance. In the case of the coupled transmission
lines, the transfer matrix for the even mode is

cos 6 72681 6
[ . (56)
(jsin8)/Z,. cos@
and for the odd mode it is
cos @ 7200 8In 6
[ | (57)
(jsin8)/Z,o cosf

Application of (54) and (55) to these transfer matrices
gives

J(Zoe — 1/Z,) sin 6
2co80 + §(Zoe + 1/Z,.) sin
J(Zoo — 1/Z50) sin @
2c080+F j(Zoo + 1/Z,) sin 6

Poe =
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2
Toe = .
2¢co80 + j(Zoo + 1/Z,) sin @
2
Too = . . : (58)
2co80+ j(Zoo + 1/Z,,) sin 6
When the condition
ZoZoo = 1 (2)
is satisfied (58) reduces as follows:
] Zne - 1/Zop sin
I‘oe = — Ty = ]( )
2¢080 4 j(Zoe + 1/Zsc) sin 0
2
Too=T (59)

T 2c080+ j(Zwt 1/Z0) sing

From (53) the signals emerging from the four ports of
the directional coupler are then:

4, =0 (60)
] Zoe - 1 Zor sin i
Ay =Tym o JGmZ VZImE 61)
2088 4 j(Zoo + 1/Z40) sin 6
2
4:=T (63)

T 2c080 + j(Zo + 1/ 7o) sin 6

Egs. (60) and (62) show that the coupler is perfectly
matched and isolated at all frequencies, while the
coupling to ports 2 and 4 vary with frequency.

The proof that the analysis of the directional coupler
is equivalent to that of a stepped impedance filter
[providing (2) holds] is now evident from (61) and
(63). These are simply the reflection and transmission
coefficients respectively of a uniform transmission line
of electrical length @ and characteristic impedance
Zoe, normalized to its input and output terminations. It
is a trivial extension to show that the multi-element
coupler retains the perfect VSWR and isolation property
if each element has the same effective characteristic
impedance, z.e., if

ZoeIZool = ZerZoo‘z =

= ZoenZoon =1 (64)

and hence the analysis of this stepped coupler is iden-
tical to that of a multi-element stepped filter, as shown
in Fig. 2.

The simple formulas for the power insertion loss be-
tween arms 1 and 4 of the directional coupler, e.g., (1)
and (3), are given by application of the well-known
formula

L=14%(4 - D) — 4B - () (65)

where 4 and D are the real and B, C the imaginary
elements of the transfer matrix for a lossless network.
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ArpeENDIX T1

GENERAL SYNTHESIS OF TRANSMISSION-LINE STEPPED-
IMPEDANCE FILTERS

Riblet® has proved that a rational function of ¢ =tanh
g (in Riblet's notation t=1/p) with real coefficients
written in the form

A(0) + B
D(t) + C)

with 4 and D even and B and C odd functions of ¢,
is the input impedance of a stepped-impedance filter
with equal line lengths § if

Z(1) = (29)

1) Z is a positive real function of ¢, and

2) AW D) — BHCQ) = C'(1 = )" (66)

where C’ is a constant.
Leo Young!” has pointed out that a third condition is
required, namely that

3) The degrees of the numerator and denominator
in (29) are the same (otherwise a stub will be required).

Riblet’s theorem may be extended by noting that
any two-port lumped-element ladder network consist-
ing of simple series reactances and shunt susceptances
terminated by pure resistances has a transfer matrix
of the form

[Mw B@] 67

C(p)  D(p)

where p is the complex {requency wvariable, 4 (p), D(p)
are even functions of p, and B(p), C(p) are odd functions

of p. The insertion loss is therefore
L=1+34—-DP—3B-C (69

and the square of the magnitude of the input reflection
coefhicient is

Hd - D) — 3B - O
L34 — D) = 3(B — O)?

T | = (69)

Now if the frequency variable is replaced by a linear
function in cos 6 and sin 6, then it is easily shown, by
multiplying the numerator and denominator of (69) by

= (1 _ tz)n’
cos2n §

that

Si#) + fole? '
1 — &) 4 1) + fo()

TOf = (70)

17 L. Young, “Concerning Riblet's theorem,” IRE TRrANS. ON
MicCROWAVE THEORY AND TECHNIQUES, vol. MTT-7, pp. 477-478;
October, 1959.
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Richards” has shown that the right half of the p plane
maps into the right half of the ¢ plane, and since Z(p)
is positive real therefore Z(f) must be positive real,
proving that condition 1) holds. The impedance Z{(f)
obtained from (70) will give (29). Since Z(¢) is positive
real, all the coefficients appearing in Z are of the same
sign, and the degrees of the numerator and denominator
differ at most by unity. However, in the case of a proto-
type ladder network where the poles of the insertion
loss function are all at infinity, this difference is zero.
The reflection coefficient is

(A-D)+ B-0)

M= AT D+6+0 o
giving
(4 =Dy} —(B—-O)
2= . 72
! ro| 4+ D)y — (B+(C)* (72

Eqgs. (70) and (72) are identical, and equating the dif-
ferences between the numerator and denominator of
each expression for T'(f)? gives

A -D@) — B{)-C(t) = +(1 — )~

which is (66), 4.e., proving condition 2). The following
theorem may now be stated:

An insertion loss function of the form
L =1+ [fi(acosf+ bsing)|
+ [fa(a cos 0 + b sin )2 (73)

can be realized as a stepped impedance filter with
real positive characteristic impedances if the function

L =1+ [filw]*+ [fow)]? (74)

having all its poles at infinity, is realizable as a two-
port ladder network consisting of simple lossless
series reactances and shunt susceptances terminated
by resistances.

The restriction that the impedance function shall
have a numerator and denominator of equal degree is
implied by the form of (74), since this has all its poles
at infinity, and therefore there is no need to state the
restriction explicitly in the theorem.

The prototype function considered in the present
context is given by

L =148 — i*T2(w) (15)

and it is quickly proved that this satisfies the require-
ments of the above theorem. The only difference be-
tween (75) and the usual Chebyshev insertion loss func-
tion encountered in ladder network filter theory is in
the sign of the A®T,2 (w) term. Eq. (75) can still be
physically realized however, since the roots of |I‘(jw) t 2
formed from it are similar, giving

| T(jw) |2 = T(jw)  T(—je)

with the roots of I'(jw) occurring as complex conjugate

(76)
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pairs. Hence I'(p) (where p=¢+jw) can be selected
to be analytic in the right-half plane, z.e., Z(p) is posi-
tive real, a necessary and sufficient condition for the
physical realization of the insertion loss function of
(75). Application of the above theorem shows that the
transformation w-->cos 0/cos 8, in (75), giving (6), en-
ables the resulting insertion loss function to be realized
as a stepped impedance filter.

An alternative and possibly more direct proof that
(6) can be synthesized as a stepped impedance filter
is obtained by applying the reasoning which proved the
theorem of this appendix, and showing that (66) is true.
The main text shows that Z(f) is positive real, and
(26) that the numerator and denominator of Z(¢) are of
the same degree.

ArpeENDIX 111
PaasE PROPERTIES OF THE ASYMMETRIC COUPLER

The couplings to arms 2 and 4 of the asymmetric
coupler are given by I' and 7" (see Fig. 2) derived from
the transfer matrix (7), i.e.,

= . (77)

(4, + D) +7(B.+ C)

2

T= , (78)

(4o + D) +7(B.+ C.)

and the power division between arms 2 and 4 is
' (d.— Dn) +7(B, — Cy) -

n= = : (79)

T 2

In the case of a symmetric coupler, e.g., the three-
quarter wavelength coupler described previously,? the
phase difference between I' and T is 90° at all fre-
quencies because A,=D,. This condition does not hold
for an asymmetric coupler, and the phase difference is

B, —C,

= tan~! —— " .
¢ 4, — D,

(80)

Thus, while the symmetric 3-db coupler can be used
as a 90° hybrid, this is not immediately true of the
asymmetric 3-db coupler, which has a phase shift ¢
varying in an approximately linear fashion over the
operating frequency band of the coupler. However, by
the addition of a length of line to one of the output
arms, this phase variation can be approximately can-
celled, and a usable 90° hybrid performance obtained.
In other words, reference planes exist in arms 2 and 4
where the phases differ by approximately 90° over the
band.

As an example take the case of the two element
asymmetric coupler. This has a transfer matrix given
by (36) to (40), but in this simple case it is preferable
to form the matrix directly by analysis, giving

I: cos?@ — (Zysin?0)/Z, 4(Z:1+ Z,) sin 8 cos 6 } (1)
§(1/Z1+ 1/Z5) sinfcosf cos?f — (Z,sin?6)/Z, ]
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The phase difference is given by (54), z.e.,
¢ = tan™! (K; cot ) (82)
where
Zi+ 2 — (/2 +1/7
,1=(1+ ) — (/24 1/2:) (83)

(Z2/2y — 2,/ Z5)

At midband 6=7/2 giving ¢=0. At zero frequency
¢=m/2, and at 6=, ¢=—x/2, so that by adding a
line of electrical length w/2 at midband to ¢ the phase
will be exactly w/2 at these three points. In order to
decide on which arm to include the extra line it is
necessary to find the exact meaning of the sign of the
phase. Negative phase implies a forward traveling
wave, t.e., one emerging from an output arm, so by
writing
r |r|em |r|

= ] o = )

then

¢’ = 04 — bs. (84)

Hence, the extra line must be added to arm 4, which
is the one leading into the closely coupled element. The
phase difference between the new reference planes is now

¥ =¢+ 0= tan"! (K;cotf) + 0 (85)
where in the range 0 <8<w
™ Kia
Y < tan™! (K cotf) < -!—? . (86)
Maximum and minimum values of ¥ occur when
d -
d—l: =0, i.e., for 6,, = tan™* + /K, (87

and these values of 6 substituted in (85) give the points
of maximum deviation of ¢ from 90°. For example, in
the case of a two-element coupler designed to give a
coupling of 3db +£0.9 dbovera7:1 band then K;=2.8,
giving
0 = 59.3° and 110.7°.
Substituting in (85) gives
= 118.6° and 61.4° (respectively)

i.e., a phase variation of +28.6° about 90°.

When the coupling ripple level is decreased, the
phase linearity is improved, e.g., for a 5:1 bandwidth
giving £0.48 db ripple then the phase variation reduces
to +£22.2.°

Variations of this order of magnitude are quite ac-
ceptable in many applications. In cases where the phase
is required to be much more exactly equal to 90°, then
the symmetrical form of the coupler should be used.
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APPENDIX IV
GENERAL FORMULAS
A. n=4
Remembering (20), (25) becomes
sinh J 1+ t) @+ Tt + | 11]?)
sinh H (¢t + )+ 1)+ T
giving the transfer matrix
ag* -+ ad? + 1
I: cst® + cut

T =

bst® + byt
(88)
dg* + dot? + 1
where

= h(sinh H + sinh J)

B2+ T/t + t) + /'td] sinh H
B[] t1]? + Tats] sinh J
b1 ]’[Tl t'ts "2ty + ¢)] sinh H
} + | 1 |% ta sinh J.

} h(Tl + tz + t4’) sinh H + ]L(Tl + Tz) sinh J

C1

In the above equations the plus sign refers to the upper
quantities on the left-hand side, and the negative sign
to the lower quantities. The roots [tl'] 2 Ty, etc., are
obtained from (23), (24), et seq., with n=4. In deriving
the equations a relation similar to that of (49) has been
used, namely that

h [ l‘ll |2f2,t4, sinh H =1 (89)

which is readily proved.

Expressions for the four normalized even-mode im-
pedances are now obtained by breaking up matrix (88)
into its constituent matrices, giving

ayt+ a4+ 1 b;+ b
Zy=—1 7 " . (90)
cs+ a1 di+da+1
7, = c3l1 — Gy +1 _ d4Z1 - Zi+ by (91)
(14/21—1/Zl+61 bS//Zl'—d4+1
Zs = d4Zz/Zl +1 _ by — Zy — Z, (92)
c1 — 1/Z1 - 1/Z2 d4Z1/Z2 + 1
ZZ [ IVAVA
7. = 1 3 oty (93)
(L;Zg Zz
B. n=5
Eq. (22) gives
cosh J
T =
cosh H
W4 Tot + | 4|+ Tt + | 22]2)
( 1)

U@+ T+ | 0@+ T
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leading to the transfer matrix
[a4z4 +oatt+ 1 bts + bat? ] 3
cst® + o3t + et dut 4 dat? + 1
where
bs

} = h(cosh H + cosh J)

Cs

a
4} = W(TY + Ty + 1) cosh H + h(Ty + Ts) cosh J

4

bs AN 'TY +t/(TY -+ T)] cosh H
53} - + [ IZ + T.T:] cosh J

as BTy |62+ T 0 |2+ 6+ | ey |2

dg} + 7y TQ')] cosh H + h[T1|t:|* + T2 #1]2]cosh J
b1

ot

(T ] 82+ T | 4 [9)]cosh H

and the normalized even mode impedances are
gs+az+1  bs+ by+ by
Zl:c:ic:i—l:d4+dz+1 (%6)
cs — c1)Z1 + a2 ds— 1V)Zy+ b5+ by
»= (af - 1)/;1 St G-yt da P
a3Zs/ 71 — cs(Z1+ Zo) + 1
csZ1/Zs+ 1 — (/2 + 1/75)

_ 0522/ 71 + by — (Z1 + Zo) (98)
daZ+/Zs — bs(Zy + Z5) + 1
¢sZ:iZ3/Z> + 1
oo— (1 /Z1+1/Z,+ 1/Zs)
—(Zi+ Z:+ Z)
bsZ:/ 2175+ 1

yAY A Z2Z b '

Zy=————=
’ Z17365 lex

ihlt12

3

Z4=

(99)

(100)

Although at first glance the general formulas seem
complicated, they are quite simple to apply and would
be particularly appropriate for a computer program.
They have a good deal of symmetry, which, as sug-
gested in the main text, might imply the existence of
general formulas for any value of n.
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